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Abstract
In domains such as fashion, music, food, and micro-video recommendation, items’ representation can
be suitably enhanced through multimodal side information (extracted from images, texts, or audio).
Multimodal-aware recommender systems (MRSs) refer to the family of RSs which integrates extracted
multimodal items’ features into the classical recommendation pipeline to learn users’ fine-grained taste
towards these aspects, thus boosting the recommendation accuracy. As a general trend, recent multi-
modal recommendation approaches tend to share similar strategy patterns with few variations on the
central theme. This does not allow, in most cases, to easily interpret their accuracy recommendation im-
provements, also because these models are usually evaluated under different implementations. To bridge
such an evaluation gap, in this paper, we propose one of the first benchmark analyses on the performance
of MRSs by comparing five popular and recent approaches on widely-adopted recommendation datasets.
After introducing the helpful background notions and formulations for a multimodal-aware recommen-
dation, we first study the models’ accuracy in a unified experimental framework and hyper-parameter
setting. Then, differently from the existing works, we provide a new evaluation perspective by assessing
their recommendation performance under the lens of novelty and diversity of recommendations. Besides
confirming some of the observations from the related literature, results shed light on unexpected findings,
which show how a careful hyper-parameter tuning can make shallow and less recent approaches quite
competitive against the state-of-the-art ones.
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1. Introduction

Online platforms for e-commerce (e.g., Amazon), media streaming (e.g., Netflix), social networks
(e.g., Instagram), and traveling (e.g., Booking) currently host a large amount of digital data, such
as images, texts, and videos. Recommender systems (RSs), which work under the hood of such
platforms to learn user-item preference patterns and promote a personalized user experience,
have started to leverage such content to enhance the quality of their recommendations.

In this respect, the literature [1] has introduced a novel family of RSs, called multimodal-aware
recommender systems (MRSs). Indeed, it has been widely demonstrated that in specific scenarios
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such as fashion [2], music [3], food [4], and micro-video [5] recommendation, MRSs may benefit
from multimodal side information to tackle (i) the sparsity of the user-item matrix, (ii) the
difficulty of learning preference patterns for users and items with few recorded interactions
(i.e., cold-start scenario), and (ii) the inexplicable nature of users’ actions (e.g., clicks, views)
which are implicit and may not be easily profiled.

By leveraging pre-trained deep learning models for image classification [6], text sentiment
analysis [7], and audio classification [8], MRSs inject high-level multimodal features of items
extracted through such deep networks into the recommendation pipeline to augment items’
embedded representations, thus learning finer-grained users’ preferences. Starting from the
pioneer work by He and McAuley [9], which integrated only visual features of product images
into BPR-MF [10], several approaches have later adopted similar solutions, with many note-
worthy attempts optionally introducing the textual and audio modalities to learn more refined
users and items latent representations [1, 11, 12, 13, 14].

Despite their indisputable success as recognized in the recent literature, mainly thanks to their
recommendation accuracy improvements to the existing baselines, some performance evaluation
concerns still raise. Indeed, as most of these methods follow similar strategy patterns with
few variations on the main theme, it can be challenging to unveil which technique is actually
providing the most impactful contribution to the recommendation performance. Additionally,
most of such approaches are trained and evaluated under different implementations, which come
with their own data splitting/sampling, hyper-parameter searching, and evaluation protocols.

To address such an evaluation gap in the literature, our work aims to provide the first
extensive benchmarking setting for the multimodal-aware recommendation. Specifically, our
contributions are threefold:

• We provide a unified framework to benchmark five state-of-the-art multimodal-aware recom-
mender systems (i.e., VBPR [9], MMGCN [1], MGAT [11], GRCN [12], and LATTICE [13]) on
three popular recommendation datasets from the Amazon catalog [15] (i.e., Office, Toys, and
Clothing).

• We run extensive hyper-parameter explorations to fine-tune all tested models under the same
settings for a fair comparison. While confirming some findings from the existing literature,
results also show how careful hyper-parameter tuning can make even shallow approaches
(e.g., VBPR) quite competitive against more complex and recent ones (e.g., GRCN).

• In addition to assessing recommendation accuracy, we complement the evaluation through
an analysis of the novelty [16, 17] and diversity [18] of the produced lists of recommendation.
To the best of our knowledge, this work is the first to perform this analysis in the domain of
multimodal-aware recommendation.

The rest of the paper is organized as follows. First, we depict the related literature on
multimodal-aware recommendation and novelty/diversity in recommendation (Section 2). Then,
in Section 3, we provide the useful background notions about the (multimodal-aware) rec-
ommendation problem, and report the main formulations of the tested MRSs for our study.
Afterwards, we present our proposed analysis in Section 4, where we report details about the
adopted experimental settings to conduct our investigation. Finally, we show and discuss about



the obtained results in Section 5, and define the directions to follow in future directions of this
analysis in Section 6. To foster the reproducibility of our benchmark, we share the code and
datasets adopted in this work: https://github.com/sisinflab/MultiModal-Eval.

2. Related Work

This section provides an outlook on multimodal-aware recommendation and focuses on the
evaluation of recommendation algorithms under the lens of novelty/diversity.

2.1. Multimodal-aware recommendation

Independently on the domain and task (e.g., fashion [19, 20, 21], music [22, 3, 23], food [4,
24, 25], and micro-video [1, 26, 27] recommendation) the common rationale in multimodal-
aware recommendation is about augmenting users and/or items representation through their
multimodal profiles.

Indeed, multimodal learning [28, 29] has demonstrated to be beneficial by tackling known
issues in the recommendation community such as data sparsity and cold-start [9, 3, 30]. Addi-
tionally, multimodal content may help to unveil the possible intents behind implicit user-item
interactions [31] through attention mechanisms [20, 32, 11, 33, 34] for the sake of explainability.

Given the increasing impact graph neural networks [35, 36] have had on recommendation [37,
38], several solutions introduce multimodality on nodes of the user-item graphs (but also
knowledge graphs [39]) and refine such representations through the message-passing schema.
After some initial attempts which work by simply injecting the multimodal item features into
the graph-based recommendation pipeline [40], more advanced techniques propose to learn
separate graph representations for each modality [1] and disentangle the users’ preferences
at modality level [11, 12, 14]. Finally, recent approaches are trained to uncover multimodal
structural differences among items in the catalog [13, 41, 42].

Despite showing superior accuracy recommendation performance, we recognize a critical
issue in the training and evaluation of such approaches. Concretely, each of these models usually
come with their own implementations, meaning that they perform custom data splitting/sam-
pling, hyper-parameter searching, and evaluation protocols. To this end, we provide a unified
experimental framework to train and test five of the most popular and recent multimodal-aware
recommender systems (i.e., VBPR [9], MMGCN [1], MGAT [11], GRCN [12], and LATTICE [13],
refer to Table 1) under the same shared settings.

2.2. Novelty and diversity in recommendation

User experience plays a crucial role in recommendation platforms, as highlighted by several
academic studies [55, 56, 57]. Such works emphasize that suggesting interesting lists of items
satisfies users and encourages them to remain loyal to the platform, ultimately leading to
increased profits [58]. To ensure a good user experience, the recommended items must be
nontrivial, diverse, possibly unexpected [57, 59], fair [60, 61], and explainable [61, 62]. However,
designing dedicated models for recommendation systems presents significant challenges, mainly
because evaluating them requires conducting user studies.

https://github.com/sisinflab/MultiModal-Eval


Table 1
An overview on the selected multimodal-aware recommender systems, along with their publication
venue and year, and a non-exhaustive set of papers where they are used as baselines.

Models Venue Baseline in

VBPR [9] AAAI 2016 [20, 43, 32, 11, 13, 44]
MMGCN [1] MM 2019 [39, 45, 46, 21, 47, 48]
MGAT [11] IPM 2020 [49, 50]
GRCN [12] MM 2020 [51, 13, 44, 47, 48, 52]
LATTICE [13] MM 2021 [47, 48, 53, 14, 54]

Consequently, researchers have invested substantial effort in exploring beyond-accuracy
dimensions within the field of recommendation systems over the past two decades [18, 17, 63].
These dimensions refer to aspects beyond the traditional accuracy metric, aiming to improve
the overall user experience.

While user experience has been a crucial aspect when evaluating multimodal-aware intelligent
systems [64, 65, 66] for years, in recommendation it has gained attention only recently [67,
68]. As for multimodal-aware recommendation, most of the research efforts have focused on
emphasizing the advantages of multimodal recommendation models in addressing the cold start
user problem [9, 3, 69]. However, to the best of our knowledge, there is a lack of recent scientific
literature that explicitly considers the impact of multimodality on user experience in terms of
novelty and diversity of the produced recommendations. To this end, our work stands first and
foremost as an attempt to bridge such an evaluation gap.

3. Background

This section first provides notations and formulations about the general recommendation
problem. Then, we introduce the multimodal-aware recommendation problem by describing
our study’s five selected multimodal baselines.

3.1. Recommendation problem

Let us denote with 𝑢 ∈ 𝒰 , 𝑖 ∈ ℐ , and 𝑟 ∈ ℛ a user, an item, and their recorded interaction (if
any), respectively. Given 𝜌(·) as the preference score prediction function for each user-item
pair, a recommender system (RS) aims to build, for each user, a top-𝑛 list of items maximizing
the following posterior probability (𝑝𝑟𝑜𝑏):

Θ̂𝜌 = argmax
Θ𝜌

𝑝𝑟𝑜𝑏(Θ𝜌| 𝒰 , ℐ,ℛ), (1)

where Θ𝜌 = [𝜃
(0)
𝜌 , 𝜃

(1)
𝜌 , . . . , 𝜃

(|𝒲𝜌|−1)
𝜌 ] is the vector collecting all trainable weights for the

inference function 𝜌(·), 𝒲𝜌 = {𝜃(0)𝜌 , 𝜃
(1)
𝜌 , . . . , 𝜃

(|𝒲𝜌|−1)
𝜌 } is the set of such weights, and |𝒲𝜌| its

cardinality. For instance, in the case of latent factor models (e.g., matrix factorization [10]), the
set of trainable weights 𝒲𝜌 consists, in the minimal setting, of the user and item embeddings.



3.2. Multimodal-aware recommendation problem

Let us denote with 𝑚 ∈ ℳ a single modality to profile an item or the user’s preference
towards that modality. Generally speaking, 𝑚 is one of {𝑣𝑖𝑠𝑢𝑎𝑙, 𝑡𝑒𝑥𝑡𝑢𝑎𝑙, 𝑎𝑢𝑑𝑖𝑜} meaning
that, for instance, a product image and description involve the 𝑣𝑖𝑠𝑢𝑎𝑙 and 𝑡𝑒𝑥𝑡𝑢𝑎𝑙 modalities,
respectively, a song involves the 𝑎𝑢𝑑𝑖𝑜modality, and a video involves the 𝑣𝑖𝑠𝑢𝑎𝑙, 𝑡𝑒𝑥𝑡𝑢𝑎𝑙, 𝑎𝑢𝑑𝑖𝑜
modalities.

By exploiting deep neural networks already pre-trained for other tasks (e.g., image classifica-
tion, text sentiment analysis, and audio classification), the necessary initial step is to extract
high-level features from the multimodal input data and inject them into the recommendation
algorithm. Then, such additional multimodal embeddings may be either trained or fixed to
provide a supervision signal for the model training in the end-to-end downstream task. Finally,
the obtained multimodal representations could be fused into a single representation to refine
the output of the preference prediction score function 𝜌(·). On such basis, we complement the
vector collecting all trainable weights introduced in the previous section with an additional
vector Θ𝑚 = [𝜃

(0)
𝑚 , 𝜃

(1)
𝑚 , . . . , 𝜃

(|𝒲𝑚|−1)
𝑚 ] which collects all trainable weights referring to the

modality 𝑚 ∈ ℳ, where 𝒲𝑚 = {𝜃(0)𝑚 , 𝜃
(1)
𝑚 , . . . , 𝜃

(|𝒲𝑚|−1)
𝑚 }.

In the following, we summarize the main strategies implemented in each of the five selected
multimodal-aware recommendation systems.

3.2.1. VBPR

Visual-bayesian personalized ranking [9] (i.e., VBPR) is among the first attempts to bring visual-
aware side information (e.g., high-level visual features extracted from product images [70, 71])
into the BPR-MF recommendation algorithm. In addition to the user and item collaborative
embeddings, whose inner product estimates the interaction score, the authors introduce two
visual user and item embeddings, where the latter is the high-level features extracted from
product images through a pre-trained convolutional neural network. The two inner products
coming from the collaborative and visual embeddings are summed to obtain the final prediction
score. Even though VBPR is originally designed as a single-modality recommendation approach,
we follow [13] and introduce additional user and item embeddings for each further modality in
the same manner as the visual one.

3.2.2. MMGCN

Multimodal graph convolution network [1] (i.e., MMGCN) brings multimodality to graph-based
recommendation. Specifically, the authors propose to learn a separate graph convolutional
network for each considered modality, thus resulting in three user and item representations
accounting for users’ different attitudes towards each modality. Finally, all modality embeddings
for both users and items are combined through element-wise addition, and the preference
prediction score is obtained via inner product.



3.2.3. MGAT

Multimodal graph attention network [11] (i.e., MGAT) is a slight variation to the MMGCN
framework, where the graph convolutional layer is augmented with the gate and attention
mechanisms. The obtained multimodal representations are averaged, resulting in a single
representation for users and items, which is eventually exploited for the score prediction.

3.2.4. GRCN

Graph-refined convolutional network [12] (i.e., GRCN) adopts the information conveyed by
modalities to refine the entries of the adjacency matrix. Indeed, given the implicit nature of the
user-item interactions in the bipartite graph, the idea is to find (and prune) the edges which
may not correspond to the actual preferences of each user. The learned multimodal user and
item representations are combined through concatenation to obtain a final representation for
the preference score prediction.

3.2.5. LATTICE

Latent structure mining method for multimodal recommendation [13] (i.e., LATTICE) builds an
item-item similarity graph for each modality and refines such a structure via graph structure
learning. The updated adjacency matrices are combined through a weighted sum to give a
different importance weight to each modality. The overall adjacency matrix is then used to refine
item embeddings through a graph convolutional network. Finally, the learned item embeddings
may represent any backbone based on user and item latent factors (e.g., BPR-MF).

4. Proposed analysis

This section describes our proposed analysis for multimodal-aware recommendation. First, we
report on the adopted datasets, along with details about the extraction of multimodal features.
Then, we introduce and formalize the set of evaluation metrics accounting for accuracy, novelty,
and diversity of recommendation. Finally, we outline the details about reproducibility for
our work, by providing information about dataset splitting and filtering strategies, and the
hyper-parameter search.

4.1. Datasets

In our study, we conduct extended experiments on three popular review datasets from the
Amazon catalog [15] to better generalize the insight derived from our analysis. The categories
are: Office Products (Office), (b) Toys & Games (Toys), and (c) Clothing, Shoes & Jewelry
(Clothing). Each dataset consists of both visual and textual modalities, where the former are
made available by McAuley et al. [15]. Thus, in our analysis, we utilize the already pre-extracted
4,096-dimensional visual features which are publicly available1. For the textual modality,
by following [13], we aggregate the item’s title, descriptions, categories, and brand, thereby

1https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html.

https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html


Table 2
Statistics of the tested datasets.

Datasets |𝒰| |ℐ| |ℛ| Sparsity (%)

Office 4,905 2,420 53,258 99.5513
Toys 19,412 11,924 167,597 99.9276
Clothing 39,387 23,033 278,677 99.9693

generating textual embeddings. In this regard, we leverage sentence transformers [72, 13],
acquiring 1,024-dimensional sentence embeddings. Additional dataset information can be found
in Table 2.

4.2. Evaluation metrics

The choice of appropriate evaluation metrics plays a crucial role in assessing the effectiveness
of recommendation systems. In this work, and differently from the existing literature on
multimodal-aware recommendation, we take into account metrics measuring the accuracy,
along with the novelty and diversity of recommendation. The metrics are listed hereinafter.
Note that all metrics are formulated in a way higher values stand for better performance.

4.2.1. Accuracy

In this study, we adopt the recall, normalized discounted cumulative gain, and precision as
metrics for evaluating the accuracy performance calculated on top-𝑘 recommendation lists.
Recall. The recall measures the ability of the system to retrieve relevant items from the
recommendation list, emphasizing the importance of comprehensive coverage with respect to
the list of user interactions [73]:

Recall@𝑘 =
1

|𝒰|
∑︁
𝑢∈𝒰

|Rel𝑢@𝑘|
|Rel𝑢|

. (2)

The term Rel𝑢 indicates the set of relevant items for user 𝑢, while Rel𝑢@𝑘 is the set of relevant
recommended items in the top-𝑘 list.
nDCG. The normalized discount cumulative gain (nDCG) takes into accounts both relevance
and ranking position of recommended items, considering the varying degrees of relevance:

nDCG@𝑘 =
1

|𝒰|
∑︁
𝑢

DCG𝑢@𝑘

IDCG𝑢@𝑘
, (3)

whereDCG@𝑘 =
∑︀𝑘

𝑖=1
2𝑟𝑒𝑙𝑢,𝑖−1
log2(𝑖+1) quantifies the cumulative gain of relevance scores through the

recommended list, with 𝑟𝑒𝑙𝑢,𝑖 ∈ Rel𝑢, and IDCG represents the cumulative gain of relevance
scores for a perfect (i.e., ideal) recommender system.
Precision. The precision (dubbed as “Prec” in the following) focuses on the quality of the
recommendations by quantifying the proportion of relevant items among the recommended



ones, highlighting the system’s ability to provide accurate suggestions:

Prec@𝑘 =
1

|𝑈 |
∑︁
𝑢∈𝒰

|Rel𝑢@𝑘|
𝑘

. (4)

Indeed, precision and recall are strictly related since both depend on the user relevance of the
recommendation list, with the former normalized on recommender list cardinality and the latter
on the user relevance list cardinality.

4.2.2. Novelty and diversity

To comprehensively evaluate the quality of recommendation, we also employ popular metrics
to quantify the recommendation novelty and diversity. The selected metrics are the Expected
Free Discovery (EFD) and Gini index, which are complemented by a measure of the coverage
provided by the recommendation lists.
EFD. The EFD, proposed by Vargas and Castells [17], is a novelty metric that utilizes the inverse
collection frequency. It quantifies the effectiveness of an algorithm in recommending relevant
long-tail items.

EFD@𝑘 = 𝐶
∑︁
𝑖𝑘∈𝑅

disc(𝑘)𝑃 (Rel𝑢@𝑘 | 𝑖𝑘, 𝑢) ·

· (− log2 𝑝(𝑖 | seen, 𝜃)) .
(5)

Gini Index. The Gini index (dubbed as “Gini” in the following) quantifies the disparity in item
popularity among users. It allows to measure if certain items are consistently favored by a large
portion of users at the detriment of other ones. In this work, we use its normalized version
according to which a high Gini index indicates a more balanced distribution of item recom-
mendations, implying that a wide variety of items are being suggested to users. On the other
hand, a low Gini index suggests that a few popular items are dominating the recommendations,
leading to a less diverse recommendation experience [74]. Its formulation is:

Gini@𝑘 = 1−

(︃∑︀|ℐ|
𝑖=1(2𝑖− |ℐ| − 1)𝑃 |@𝑘(𝑖)

|ℐ|
∑︀|ℐ|

𝑖=1 𝑃 |@𝑘(𝑖)

)︃
, (6)

where 𝑃 |@𝑘(𝑖) is the popularity of each item 𝑖, in the top-𝑘 users recommended list, indexed
in non-decreasing order (i.e., 𝑃 |@𝑘(𝑖) ≤ 𝑃 |@𝑘(𝑖+ 1)).
Item Coverage. The item coverage (dubbed as “iCov” in the following) provides insights on the
coverage (item-side) measured in the recommendation lists. A higher item coverage indicates
that a larger portion of the item space is being explored and recommended to users, suggesting
a broader coverage of user preferences and a potentially more comprehensive recommendation
experience. Specifically, we have:

iCov@𝑘 =
|
⋃︀

𝑢 ℐ̂𝑢@𝑘|
|ℐ𝑡𝑟𝑎𝑖𝑛|

, (7)

where ℐ̂𝑢@𝑘 represent the list of top-𝑘 recommended items for a user 𝑢.



Table 3
Set of explored and fixed hyper-parameters for our study.

Models Hyper-parameters Values

All
epochs 200

batch_size 1024
seed 123

VBPR
lr {1e-2, 1e-3, 1e-4, 3e-5, 1e-5}

factors 64
comb_mod concat

l_w {1e-5, 1e-2}

MMGCN

lr {1e-2, 1e-3, 1e-4, 3e-5, 1e-5}
num_layers 3

factors 64
factors_multimod (256, None)

aggregation mean
concatenation False

has_id True
latent_factors 64

l_w {1e-2, 1e-5}

MGAT

lr {1e-2, 1e-3, 1e-4, 3e-5, 1e-5}
num_layers 2

factors 64
factors_multimod (256, 100)

GRCN

lr {1e-2, 1e-3, 1e-4, 3e-5, 1e-5}
num_layers 2

num_routings 3
factors 64

factors_multimod 128
aggregation add

weight_mode confid
fusion_mode concat

LATTICE

lr {1e-2, 5e-3, 1e-3, 5e-4, 1e-4}
n_layers 1

n_ui_layers 2
top_k 20
l_m 0.7

factors_multim 64

4.3. Reproducibility

To ensure reproducibility, we provide detailed information about the dataset preprocessing and
splitting, models’ tuning and evaluation.

The datasets have been filtered following the 𝑝-core strategy with 𝑝 = 5. Then, we split the
dataset with 80%/20% train-test hold-out strategy. For the hyper-parameter tuning phase, we
remove the 50% of the test set and use it to validate the results on Recall@20. For all models, we
fix the maximum number of epochs to 200 and select the model weights according to the epoch
providing the best results on the validation set.

The complete set of hyper-parameters is reported in Table 3. The code for the entire pipeline
(which is implemented in Elliot [75]) can be found at this link https://github.com/sisinflab/
MultiModal-Eval.

https://github.com/sisinflab/MultiModal-Eval
https://github.com/sisinflab/MultiModal-Eval


5. Results and Discussion

In this section, we seek to answer the following research questions (i.e., RQs):

RQ1. What is the accuracy performance of multimodal-aware recommender systems and is it
aligned with the findings from the existing literature? Section 5.1 aims to investigate the
recommendation performance in terms of accuracy (i.e., Recall, nDCG, and Prec).

RQ2. What is the recommendation performance of such models in terms of novelty and diversity
of the produced lists of recommendation? Section 5.2 unveils important insights in terms
of novelty and diversity of recommendation (i.e., iCov, Gini, and EFD).

5.1. Accuracy performance (RQ1)

The results of the accuracy metrics analysis is reported in Table 4. As a general remark, we
notice how the results are quite standard across the different datasets.

Overall, LATTICE is the best model, showing its superior performance across all the datasets
and the metrics, while VBPR is the second-to-best model. Surprisingly, complex and recent
approaches such as MMGCN, MGAT, and GRCN do not outperform a shallow and classic model
such as VBPR. Conversely, LATTICE’s results are aligned with the findings from the literature.

From a dataset-wise analysis, the highest metrics-performance variation between LATTICE
and VBPR is observable for Toys and Clothing while it is limited in Office. Indeed, we should
point out that Toys and Clothing have three times and four times the interactions of Office,
respectively, but they are much sparser. This aspect highlights how LATTICE manages to
recommend more accurate items despite the high dataset sparsity.

From a metric-wise analysis, LATTICE, compared to VBPR, correctly predicts relevant items
(i.e., high Recall) with a higher probability to be in a top positions of the recommendation
lists (i.e., nDCG). The same trend is not observable in the Recall/Prec metric pair, but this is
explainable considering that the latter formulation is normalized as the number of recommended
items increases. Thus, it can result in a lower performance variation between LATTICE and
VBPR at the increase of 𝑘.

From a model-wise analysis, we notice how MMGCN has better performance on Toys while
showing the lowest performance at the increase of interactions number and sparsity. GRCN
has an opposite trend compared to MMGCN, boosting its performance with highly sparse data.
MGAT performs in the middle of MMGCN and GRCN with no remarkable note.
Summary. Accuracy results demonstrate that, with the only exception of LATTICE (whose trend is
almost aligned with the existing literature) all other approaches’ performance is heavily influenced
by the hyper-parameter exploration and dataset characteristics. Indeed, even shallow models (e.g.,
VBPR) show competitive if not superior accuracy measures compared to more recent and complex
solutions (e.g., MMGCN, GRCN).

5.2. Novelty/diversity performance (RQ2)

Table 5 summarizes the results of the novelty and diversity metrics analysis. Overall, we observe
that some trends are quite aligned with findings from the accuracy evaluation, but also that
some other ones show deviations which we carefully describe and explain in the following.



Table 4
Accuracy results of the tested baselines when considering the top-10, top-20, and top-50 recommendation
lists. Boldface and underline stand for best and second-to-best results on each dataset/metric pair,
respectively.

Datasets Models 𝑘 = 10 𝑘 = 20 𝑘 = 50

Recall nDCG Prec Recall nDCG Prec Recall nDCG Prec

Office

VBPR 0.0652 0.0419 0.0164 0.1025 0.0533 0.0133 0.1774 0.0721 0.0095
MMGCN 0.0455 0.0300 0.0124 0.0798 0.0405 0.0109 0.1575 0.0598 0.0084
MGAT 0.0427 0.0277 0.0119 0.0745 0.0377 0.0102 0.1450 0.0552 0.0079
GRCN 0.0393 0.0253 0.0118 0.0667 0.0339 0.0099 0.1250 0.0488 0.0075
LATTICE 0.0664 0.0449 0.0173 0.1029 0.0566 0.0137 0.1780 0.0751 0.0096

Toys

VBPR 0.0710 0.0458 0.0131 0.1006 0.0545 0.0096 0.1523 0.0667 0.0061
MMGCN 0.0256 0.0150 0.0052 0.0426 0.0200 0.0044 0.0785 0.0285 0.0033
MGAT 0.0375 0.0230 0.0072 0.0595 0.0294 0.0059 0.1039 0.0398 0.0043
GRCN 0.0554 0.0354 0.0108 0.0831 0.0436 0.0083 0.1355 0.0559 0.0056
LATTICE 0.0805 0.0512 0.0148 0.1165 0.0617 0.0110 0.1771 0.0759 0.0069

Clothing

VBPR 0.0339 0.0181 0.0034 0.0529 0.0229 0.0027 0.0847 0.0292 0.0017
MMGCN 0.0227 0.0119 0.0023 0.0348 0.0150 0.0018 0.0609 0.0201 0.0012
MGAT 0.0244 0.0127 0.0025 0.0384 0.0162 0.0019 0.0699 0.0225 0.0014
GRCN 0.0319 0.0164 0.0032 0.0496 0.0209 0.0025 0.0858 0.0281 0.0017
LATTICE 0.0502 0.0275 0.0051 0.0744 0.0336 0.0038 0.1186 0.0425 0.0024

On the one hand, in terms of recommendation novelty (i.e., EFD), we can see that LATTICE is
the best model, with VBPR being the second-to-best approach in each dataset and for different
settings of 𝑘. Indeed, this is a further demonstration on how accuracy and novelty of recom-
mendation may be highly correlated [76, 77, 78], also in multimodal-aware recommendation.

On the other hand, when considering the diversity (i.e., Gini) and coverage (i.e., iCov) metrics,
we notice some trends deviation to the accuracy performance. Specifically, we see how GRCN is
the best model in all settings. This suggests that this approach may be (un)purposely giving up
on the accuracy to promote a wider set of items from the catalog, with a corresponding positive
effect on the system serendipity. Indeed, while its accuracy performance is not the best one,
its diversity and coverage metrics outperform all other models almost on every dataset, even
reaching 100% of covered items at 𝑘 = 50. A much more impressive trend is recognizable for
Gini, which is higher than the second-to-best model. On a dataset level, it is worth pointing
out that, even with more sparse datasets, the GRCN constantly reaches a high iCov and Gini
measures. The second-to-best model in terms of diversity is VBPR. Notwithstanding its high
accuracy, VBPR settles once again as a compelling model in terms of diversity and coverage.
Summary. While novelty results are almost aligned with the accuracy trends observed in RQ1,
the diversity/coverage measures depict a different scenario. In this respect, GRCN seems to be the
approach providing the most diversified item recommendations but at the expense of the accuracy,
while VBPR manages to reach a more balanced performance among all metrics.



Table 5
Novelty and diversity results of the tested baselines when considering the top-10, top-20, and top-
50 recommendation lists. Boldface and underline stand for best and second-to-best results on each
dataset/metric pair, respectively.

Datasets Models 𝑘 = 10 𝑘 = 20 𝑘 = 50

EFD Gini iCov (%) EFD Gini iCov (%) EFD Gini iCov (%)

Office

VBPR 0.1753 0.3634 93.83 0.1479 0.396 10.23 0.1115 0.4413 99.59
MMGCN 0.1140 0.0128 3.07 0.1027 0.0231 4.64 0.0845 0.0546 10.23
MGAT 0.1079 0.0132 5.14 0.0963 0.0241 8.12 0.0792 0.0575 17.23
GRCN 0.1215 0.4587 99.01 0.1051 0.4892 99.79 0.0829 0.5286 100
LATTICE 0.1827 0.2128 87.86 0.1513 0.2652 95.90 0.1125 0.3414 99.30

Toys

VBPR 0.1948 0.2645 84.90 0.1527 0.3011 92.82 0.1051 0.3585 97.85
MMGCN 0.0648 0.0989 37.87 0.0570 0.1450 52.51 0.0455 0.2296 72.88
MGAT 0.0929 0.1036 40.95 0.0796 0.1439 55.71 0.0612 0.2183 76.24
GRCN 0.1604 0.3954 92.66 0.1298 0.4329 97.73 0.0932 0.4864 99.73
LATTICE 0.2090 0.1656 73.80 0.1665 0.2026 86.58 0.1151 0.2662 95.94

Clothing

VBPR 0.0502 0.2437 83.40 0.0413 0.2791 92.33 0.0291 0.3344 98.00
MMGCN 0.0292 0.0136 7.58 0.0240 0.0236 12.44 0.0182 0.0493 23.34
MGAT 0.0315 0.0201 11.05 0.0263 0.0326 17.36 0.0205 0.0622 30.90
GRCN 0.0481 0.3990 93.37 0.0397 0.4368 97.77 0.0293 0.4929 99.73
LATTICE 0.0738 0.1022 58.49 0.0589 0.1384 76.20 0.0413 0.2037 93.23

6. Conclusion and Future Work

In this work, we provide one of the first benchmarking study on multimodal-aware recommender
systems through accuracy, novelty, and diversity recommendation measures. By implementing
a unified evaluation framework where we train and test five state-of-the-art multimodal recom-
mender systems on three popular datasets, we set the basis to a fair and complete comparison
setting. In terms of accuracy, the observed results demonstrate how a careful hyper-parameter
exploration can lead shallow multimodal approaches (e.g., VBPR) to be competitive to more
recent solutions; on the contrary, other recent techniques such as LATTICE show to be consis-
tently outperforming the other baselines (as reported in the related literature). When measuring
novelty and diversity of recommendation, GRCN seems to be a strong baseline for the diver-
sification of the recommendation lists, but VBPR is the solution reaching the most balanced
accuracy, novelty, and diversity performance.

The current benchmarking study paves the way to deeper analyses about the specific influence
of each component of the multimodal recommendation pipeline on the overall performance,
for instance when considering the different impact of each modality (e.g., visual and textual).
We plan to run more extensive experimental settings considering: (i) additional datasets and
baselines, (ii) deeper hyper-parameter explorations, and (iii) recommendation metrics accounting
for bias and fairness.
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