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Abstract
The release of large-scale synthetic datasets would greatly accelerate research in recommender systems.
However, there is a fundamental tension between the requirements of high quality recommendations
needing close knowledge of user behavior, and privacy, which is endangered by excessive disclosure of real
user behavior. We propose to resolve this tension by introducing two novel metrics to compare synthetic
recommender datasets: Identifiability, which measures susceptibility to multiple different attacks on
privacy and Realism, which is a comparative (as opposed to an absolute) measure of recommender
performance (between real and synthetic datasets). We do an extensive evaluation of 7 data generation
algorithms for movie and song recommendations in 28 different settings, from which we construct Pareto
frontiers of Realism vs Identifiability. This reveals multiple insights into the performance of different
synthetic data generation methods along different points on this curve. We discuss how these insights
can guide future research on synthetic data generation.

1. Introduction

Recent revolutions in Computer Vision and Natural Language Processing are often credited to
the use of massive datasets such as ImageNet [1] and Common Crawl [2], which dramatically
improved performance across a multitude of tasks, and completely changed the algorithmic
landscape by elevating data-intensive overparameterized models. In contrast, academic rec-
ommender systems have seen much less algorithmic progress at this scale, with recent work
[3] showing that linear methods invented decades ago are still competitive. One reason for
this gap is the scarcity of equivalently-sized public recommender datasets; while industrial
recommender systems are often trained on trillions of user interactions, much academic research
is still evaluated on datasets like MovieLens [4] with tens of millions of interactions or fewer.

The key limiting factor is the requirement of user privacy: unlike image and language datasets,
releasing datasets of user interactions could lead to private information about individual users
being leaked. Simply stripping any identifying information from the dataset before sharing
publicly is insufficient: Narayanan and Shmatikov [5] describe an attack using side-channel
information that de-anonymizes 99% of users in the Netflix Prize dataset. Attacks like these
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are a major reason for the relative of large-scale user interaction datasets released since the
Netflix Prize challenge, although efforts such as the SIGIR eCOM Challenge [6] and the Recsys
Challenge [7] have remedied this somewhat.

The most promising approach in our view is to create datasets of synthetic user interactions
[8, 9] satisfying two properties:

Private : Very little information about individual real users should be derivable from the
synthetic datasets. We translate this into measures of robustness against three possible
attacks recognized in the literature: membership [10, 11], de-anonymization [12, 5], and
attribute inference [13, 14, 15]. We propose an Identifiability metric for each attack method
that allows for comparison across models and datasets.

Realistic : In many cases, the goal of organizations that release synthetic datasets is not to
have external researchers develop a state-of-the-art recommendation system for their
needs, but instead to spur research on effective recommendation systems. In this scenario,
the absolute performance achieved on the synthetic dataset is not of central importance.
Instead, we want to ensure that the conclusions of empirical analyses on synthetic data
(e.g. relative performance of two offline recommendation algorithms) are likely to hold
on real data. Thus, we introduce a new metric called Realism for synthetic datasets that
measure whether such conclusions can be reliably transferred from synthetic to real data.

We propose that synthetic datasets and synthetic dataset generation algorithms (in the rec-
ommendation domain) should be evaluated by a combination of Identifiability and Realism
metrics. By contrast, evaluation using a combination of privacy metrics and absolute recom-
mendation performance would be less informative because these 2 objectives are to a significant
degree contradictory: Achieving high absolute recommendation performance (for real users) by
training on synthetic data alone correlates strongly with an understanding of real user behavior,
implying a certain amount of privacy leakage.

Realism can also have a similar tension with Identifiability but as our empirical investigations
show, different synthetic data generation algorithms can make different tradeoffs along these
axes, and a Pareto frontier emerges connecting Pareto-optimal tradeoff points representing
various synthetic generation algorithms and hyperparameter settings.

The primary goal of our work is to understand the shape of this Realism-Identifiability Pareto
frontier and to push it forward so that increasingly realistic synthetic datasets can be safely
released publicly, narrowing the gap between industrial and academic practice. To that end,
this paper makes the following contributions:

1. For any synthetic data generation algorithm for recommendation systems, we propose
3 separate Identifiability metrics that quantify robustness against each of the 3 privacy
attacks we address in this paper, and a measure of Realism that captures transferability of
empirical conclusions from synthetic to real data.

2. We perform a comprehensive set of experiments comparing 7 synthetic user generation
methods across 4 recommender algorithms using 7 recommender metrics, for 2 domains
(movies and songs); whichwe use to construct Pareto frontiers of synthetic data generation
algorithms. A number of insights can be derived from these curves, such as the surprising



weakness of VAE methods and the general robustness of specific GAN architectures such
as R-GAN [16].

3. We introduce a new approach to synthetic data generation, IdentityGAN (a variant of
TimeGAN [8]) which is Pareto-optimal on these metrics along many sections of the Pareto
frontier and may be treated as the preferred starting point for future research on synthetic
data generation. 1

Due to space constraints, related work and additional experimental evaluations are presented
in the Appendix.

2. Preliminaries

We start by defining our recommendation system setting and formalizing the synthetic dataset
generation problem. We assume a finite universe of 𝑑 items that may be consumed by users.
A user in our framework is simply identified by a binary vector 𝑢 of dimension 𝑑 where a 1
indicates that the user has rated that item positively. In our setting, we are provided a real
user dataset 𝐷 of users 𝑢, split into train and test sets 𝐷train, 𝐷test ⊂ 𝐷. We are expected to
construct a synthetic user dataset �̂� of synthetic users �̂� ∉ 𝐷, that allows us to study the behavior
of recommendation algorithms on 𝐷, without leaking information about individual users (we
define these objectives precisely in Sections 3 and 4).

As a strawman metric, we will define AbsPerf𝑅,𝑀 to be the (absolute) performance of recom-
mendation algorithm 𝑅 on some metric 𝑀 (e.g. Recall@10) when trained on �̂� and evaluated on
𝐷𝑡𝑒𝑠𝑡. See Sections 5.1 and B.3 for the full list of recommenders and metrics we consider.

3. Measuring Realism

Our criteria for realism is that the results of empirical analyses of synthetic data are very likely
to hold for the real data. The most important type of empirical analysis commonly conducted
by recommender systems researchers is a relative performance comparison of two or more
recommendation algorithms on some dataset using some offline metric, yielding the conclusion
that one algorithm significantly outperforms the other. So we seek to operationalize the realism
of synthetic dataset �̂� as the probability that if a recommender algorithm outperforms another on
�̂�, it will also outperform on 𝐷.

More formally, let ℛ be a distribution over recommender algorithms 𝑅, and ℳ a distribution
over recommender metrics, where a metric 𝑀 ∼ ℳ is a mapping 𝑀(𝑅, 𝐷train, 𝐷test) → 𝔻(ℝ),
from a recommender and dataset split to a distribution over scalars. A distribution is needed
to account for the inherent stochasticity of the measurement process due to inference-time
dropout etc. We set up a hierarchical Bayesian model as follows to sample recommenders,
metrics and measurements:

𝑅1, 𝑅2 ∼ ℛ
𝑀 ∼ ℳ

1All code, models, and reproducibility data will be shared along with the camera-ready version.



𝑚𝑖 ∼ 𝑀(𝑅𝑖, 𝐷train, 𝐷test)

�̂�𝑖 ∼ 𝑀(𝑅𝑖, �̂�train, �̂�test)

A preliminary measure of realism might be given by 𝑃(𝑚1 > 𝑚2 | �̂�1 > �̂�2) i.e. the probability
that the relative performance on synthetic data is preserved on real data. Note that this is
equivalent to the Kendall Rank Correlation between performance on 𝐷 and �̂� linearly rescaled
to the range [0, 1]. To provide a stronger measure and reduce noise we only care about large
and statistically significant differences in performance, so we conduct two-sample one-tailed
Student’s t-tests without assuming equal variance to determine if results are significant:

𝑇𝜎(𝑚1, 𝑚2) = {
1, p-value of hyp. [𝑚1 > 𝑚2] is < 𝜎
0, otherwise

This leads to our precise definition of Realism, which is the fraction of measurements where a
significant result on synthetic data is preserved on real data:

𝑅𝑒𝑎𝑙𝑖𝑠𝑚𝜎(�̂�, 𝐷) =
𝔼𝑚1,𝑚2

̂𝑚1, ̂𝑚2
[𝑇𝜎(𝑚1, 𝑚2) ⋅ 𝑇𝜎(�̂�1, �̂�2)]

𝔼�̂�1,�̂�2 [𝑇𝜎(�̂�1, �̂�2)]
(1)

For the rest of the paper, we assume a uniform distribution over a finite set of algorithms
(treating hyper-parameter variations as separate algorithms) and metrics and use 𝜎 = 0.01 in all
our experiments.

Operationally, in order to estimate the variance of the different algorithms, each uniquely
parameterized algorithm is trained N times on both 𝐷train and �̂�train, and the results evaluated
on 𝐷𝑡𝑒𝑠𝑡 and �̂�𝑡𝑒𝑠𝑡. An all-pairs comparison is done using the N samples to compute the Student t-
statistic, all statistically significant results on the synthetic data are then checked for significance
on the real data. For all experiments, N was set at 10.

4. Measuring Identifiability

A key factor restraining commercial entities from widely sharing datasets of user behavior, is the
threat of releasing private or sensitive user data. Even in many cases where attempts are taken to
anonymize or remove sensitive data before widely sharing, it has been shown that the identities
or sensitive data can be re-constructed by adversarial attacks with minimal side information
– most notably in the case of the Netflix challenge [5]. By releasing synthetic datasets, these
concerns could potentially be significantly alleviated. However, to be useful for recommendation
research, the synthetic data must have some relationship to the behavior of real users, and
this represents an opportunity for sophisticated adversaries to extract privacy-threatening
information about real users.

Recommender systems researchers have generally favored rigorous definitions of privacy
that come with provable guarantees such as differential privacy [17, 18], which ensures that the
output of a computation does not allow inference of any record from the original input. However,
practitioners have argued that these are in some cases too strong and limits the usage of many
useful algorithms and applications [19], ”requiring unconditional privacy guarantees against



computationally unbounded adversaries” [20]. We hold that such arguments are particularly
valid for the release of derivative synthetic datasets, since these have an extra level of indirection
from real data.

In the rest of this section, we outline 3 different privacy-compromising attacks that have
been described in the literature, based on strong (but not unbounded) adversary models. These
attacks were originally designed in settings where either a database or ML model was available
to the adversary, but we adapt them to our setting where only synthetic data is available. For
each, we derive a corresponding metric that measures the susceptibility of a synthetic dataset
to that kind of attack. We refer to this collection of metrics as Identifiability.

This catalog of attacks and corresponding identifiability metrics are not intended to be
provably exhaustive of the possibilities, but we believe we have covered the most commonly-
reported and well-studied scenarios. If new attacks are proposed, then it should be reasonably
straightforward to extend our framework by defining a corresponding identifiability metric,
adding it to the evaluation suite, and re-assessing our conclusions on the robustness of synthetic
data generation algorithms.

4.1. Membership-Identifiability

Figure 1: Illustration of Membership-Identifiability.
Blue nodes represent users in the real
dataset 𝐷, and yellow nodes users in the
synthetic dataset �̂�. The k-identifiability
(k=3) of the user 𝑢 ∈ 𝐷 in the left figure is
1 because there is one user in �̂� among its
k-nearest neighbors. In the right figure,
all 3 nearest neighbors of 𝑢 are from 𝐷, so
𝐼𝑘,𝐹(𝑢, �̂�, 𝐷) = 0.

The first identifiability measure addresses the
threat of discovering a particular user’s pres-
ence in a particular dataset:

Definition 1 (Membership Attack [10, 11]).
We assume an adversary who has perfect knowl-
edge of all the attributes of a real user 𝑢 (i.e.
their ratings for each item). A membership at-
tack is an attempt to infer from the synthetic
dataset �̂�, whether 𝑢 ∈ 𝐷.

This can be a privacy threat if the very ex-
istence of a user in a particular dataset can be
used to infer privacy-compromising informa-
tion about them, e.g. if a dataset is known to
have been constructed in a way that includes
or excludes certain protected categories of
users. Membership attacks were originally
introduced in the context of deriving mem-
bership information about users in a dataset
from Machine Learning models trained on
them [10]; here we extend the definition to synthetic datasets as a source.

For our Membership-Identifiability measure, we expand upon the notion of 𝜖-Identifiability
from Yoon et al. [21], although the precise justification using Membership attacks is novel.
Assume a distance metric 𝐹 between users, and a nearest neighbor function 𝑁𝑘,𝐹(𝑢, 𝐷) which
returns the nearest (under 𝐹) set of 𝑘 users in 𝐷 to user 𝑢. Then, the 𝑘-identifiability of a user
𝑢 ∈ 𝐷 w.r.t. �̂� is defined as:



𝐼𝑘,𝐹(𝑢, �̂�, 𝐷) = {
1, if 𝑁𝑘,𝐹(𝑢, 𝐷 ∪ �̂�) ∩ �̂� ≠ ∅
0, otherwise

(2)

𝐼𝑘,𝐹 is an indicator function that is 1 when there exists a �̂� ∈ �̂� that is among the 𝑘 nearest
neighbors of 𝑢 ∈ 𝐷 (See Fig 1). A user who is not 𝑘-identifiable for a sufficiently high value
of 𝑘 can be regarded as safe from a membership attack, since an adversary who knows all the
user’s attributes (i.e. item ratings) cannot distinguish him from 𝑘 other users who may or not
be present in the dataset.

Finally, the Membership-Identifiability of dataset 𝐷 at 𝑘 under 𝐹 and w.r.t. �̂� is:

Identifiability𝑘,�̂�,𝐹(𝐷) =
∑𝑢∈𝐷 𝐼𝑘,𝐹(𝑢, �̂�, 𝐷)

|𝐷|
(3)

This gives the fraction of users 𝑢 ∈ 𝐷 that have synthetic users �̂� ∈ �̂� within their 𝑘 nearest
neighbors.

4.2. Deanonymization-Identifiability

Definition 2 (Deanonymization Attack [12, 5]). We assume an adversary who has oracle knowl-
edge that a particular synthetic user, �̂� ∈ �̂� is close to a real user 𝑢 ∈ 𝐷. A de-anonymization attack
is an attempt to gain maximum information about 𝑢’s attributes (i.e. ratings) from �̂�.

We base our metric for measuring Deanonymization-Identifiability on the Mutual Information
between the ratings of 𝑢 and �̂�. Concretely, we use the generative model in Figure 2a to cast the
ratings of 𝑢 and �̂� as random variables. We assume some distribution over items 𝐼 ∼ ℐ, and
then the ratings 𝑟𝑢,𝐼 and 𝑟�̂�,𝐼 that users 𝑢 and �̂� assign to the item 𝐼 are deterministic functions of
𝐼. Deanonymization-Identifiability is defined as the mutual information between the marginal
distributions of 𝑟𝑢,𝐼 and 𝑟�̂�,𝐼:

𝑀𝐼(𝑟𝑢,𝐼; 𝑟�̂�,𝐼) = ∑
𝑟𝑢,𝐼∈{0,1}

∑
𝑟�̂�,𝐼∈{0,1}

𝑝(𝑟𝑢,𝐼, 𝑟�̂�,𝐼) log (
𝑝(𝑟𝑢,𝐼, 𝑟�̂�,𝐼)
𝑝(𝑟𝑢,𝐼)𝑝(𝑟�̂�,𝐼)

)

These marginals can be computed by the sum rule:

𝑝(𝑟𝑢,𝐼 = 𝑎, 𝑟�̂� = 𝑏) = ∑
item 𝑖

𝑝(𝑟𝑢,𝐼 = 𝑎, 𝑟�̂� = 𝑏|𝑖)𝑃(𝑖)

𝑝(𝑟𝑢,𝐼 = 𝑎, 𝑟�̂� = 𝑏|𝑖) is now fully specified as a function of 𝑖: it is 1 if the ratings by 𝑢 and �̂� are 𝑎
and 𝑏, and 0 otherwise.

Finally, we must specify the (prior) item distribution. The simplest (i.e. uninformative)
approach is to use the uniform distribution over items, but instead we propose (similar to
section 4.1) to use:

𝑃(𝑖) ∝ 1
𝑙𝑜𝑔(𝐼 𝑡𝑒𝑚𝐹 𝑟𝑒𝑞)

again, because items that are more rare impart more information.



(a) The probabilistic graphical model used to define
the mutual information between ratings of the
real and synthetic user (for Deanonymization-
Identifiability). Items are selected by some prior
distribution. Ratings of real and synthetic user
are deterministic functions of 𝐼, but 𝑟𝑢,𝐼 and 𝑟�̂�,𝐼
are random variables.
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(b) The TimeGAN model for generating synthetic
data is a combination of a Discrete Conditional
Encoder that embeds users into a Latent space
and a GANwhich distinguishes real data points
from synthetic ones.

In practice, we calculate a real user’s Deanonymization-Identifiability by averaging the mutual
information w.r.t. the 50 synthetic users that share the most items in common with the real
user. We found this metric to be more stable than using the maximum mutual information from
any single synthetic user.

4.3. Attribute-Identifiability

Definition 3 (Attribute Attack [13, 14, 15]). We assume an adversary who has oracle knowledge
of some attributes (i.e. ratings) of user 𝑢 ∈ 𝐷train. An attribute attack is an attempt to gain the
maximum possible information about 𝑢’s remaining attributes (i.e. ratings) from �̂�train.

Observe that an attribute attack on recommendation datasets is equivalent to solving the
recommendation problem for a specific subset of users, namely the ones in the original dataset,
𝐷train. Therefore, our metric for Attribute-Identifiability will reduce to a measure of recommen-
dation effectiveness for users in 𝐷train, when trained on users in �̂�train. In particular, we choose to
use Recall@20 (one of the simplest and most popular metrics) over all 𝑢 ∈ 𝐷train using EASER
(a state-of-the-art recommender; See sections 5.1 and B.3 for more details).

Attribute-Identifiability can be viewed as analogous to a measure of overfitting in traditional
Machine Learning, but instead of being computed directly on the original training set, there is
an extra level of indirection from the synthetic user training set �̂�train to the real user training
set 𝐷train from which �̂�train was derived.

5. Experimental Evaluation

We conduct a comprehensive large-scale evaluation of 6 major families of synthetic data gener-
ation algorithms (described below) in 2 different recommendation domains, MovieLens [22]
and MillionSongs [23]. Also, for computing the realism metric, we need multiple recommender
algorithms and recommendation performance metrics. For details, see Appendix B.



5.1. Synthetic Data Generation Algorithms

To capture the Pareto frontier between realism and privacy, we evaluate 4 different synthetic
data generation algorithms that cover the range from simple statistical models to deep generative
models with millions of parameters:

1. Unigrams: Our simplest generation algorithm ignores all correlational structure in the
dataset. We compute the distribution over items in the dataset, and sample each user
history from this distribution without replacement.

2. Bigrams: Here, we model pairwise correlations between items by computing the condi-
tional probabilities 𝑃(𝑗|𝑖) of a user’s history containing item 𝑗 conditional on containing
item 𝑖, then generating synthetic users by recursively sampling items 𝑖𝑛+1 ∼ 𝑃(⋅|𝑖𝑛)

3. Clustering: Following Monti et al. [9], we generate synthetic data by clustering users
using K-means with Euclidean distance between unweighted users. This is in contrast
to the identifiability calculation which weights items based on frequency. We then
compute the empirical distribution of items for each cluster and sample users from each
cluster in proportion to the cluster size and cluster item distribution. By treating 𝐾 as a
hyperparameter, we generate a family of synthetic datasets with different behaviors on
Identifiability vs Realism (see sec 5.2). We experiment with 𝐾 = [5, 10, 15, 20, 50, 100].

4. VAE: A natural approach to generating synthetic user data is to use the popular Variational
Autoencoder (VAE) model [24]. Following Liang et al. [25], the VAE consists of an encoder
and decoder, and is trained to compress the input information (i.e. the user’s vector
of item ratings) into a constrained multivariate latent distribution �̂� (encoding) from
which the input can be reconstructed with the smallest reconstruction error (decoding).
Crucially, the latent representation �̂� actually defines a distribution over users. We can
then sample from this distribution and use the decoder to generate synthetic users that
should approximate the training distribution.

5. TimeGAN: We implement a simplified TimeGAN model [8], originally proposed for
creating synthetic medical records. This model uses an auto-encoder to build a latent
representation of the real data and a generator to generate samples in this latent space
while a discriminator separates real and generated latent samples. The encoder takes
a sequence of integers 𝑋 representing items the user has interacted with, and embeds
them with a multi-layer RNN into a latent code 𝐻. A decoder then uses a multi-layer
RNN to expand the 𝐻 into a sequence of logits 𝐷. Cross-entropy loss between 𝐷 and 𝑋 is
used to train the encoder and decoder. The generator is a simple network that takes a
noise vector 𝑍 and uses a sequence of dense layers to form a synthetic latent code �̂�. The
discriminator takes 𝐻 and �̂� and uses a sequence of dense layers to classify them as real
or fake. We follow the approach of Lucic et al. [26], in automatically searching a wide
range of GAN architectures, training methods and hyperparameter settings along with
random restarts. After training the model, the generator and decoder networks are used
to generate a set of synthetic latent codes �̂� and then a dataset of synthetic users �̂�.

6. IdentityGAN: We further tested a novel and simpler GAN architecture that replaces the
input item sequence 𝑋 with a single token representing the user’s unique id. The encoder
is reduced to a sequence of dense layers embedding the user id into a latent code 𝐻. The
rest of the architecture is the same as the TimeGAN implementation above.



(a) Membership-Identifiability vs Realism: Movie-
Lens

(b) Attribute-Identifiability vs Realism: Movie-
Lens

(c) Deanonymization-Identifiability vs Realism:
MovieLens

(d) Membership-Identifiability vs Realism: Mil-
lionSongs

(e) Attribute-Identifiability vs Realism: Million-
Songs

(f) Deanonymization-Identifiability vs Realism:
MillionSongs

Figure 3: Pareto curves of Identifiability vs Realism.

7. Fractal Expansion: We follow the fractal expansion model from Belletti et al. [27] which
uses Kronecker Graph expansion adapted to binary vectors. This technique re-introduces
patterns observed in 𝐷train into each block of local interactions of the synthetic user/item
matrix in an entirely non-parametric way.

5.2. Results

Figures 3a-3f shows the results for various hyper-parameter settings of the algorithms. For
extensive discussion on the conclusions that can be drawn from these curves, and further
experiments please refer to Appendix C, omitted here due to lack of space.

6. Conclusions and Future Work

In this paper, we present a set of metrics that capture a fundamental trade-off in the creation
of synthetic recommender datasets. Identifiability gives a operational evaluation of resilience
against multiple privacy attack vectors, while Realism captures the degree to which we may rely
on the results of recommendation algorithms research built on synthetic data. The Pareto curve
analysis shows contributions from multiple algorithm families with no single one dominating.

We hope our contribution will spur research on synthetic data generation to expand the Pareto
frontier (without over-optimizing for specific metrics) similar to how Reclist [28] expanded
the role of behavioral testing in the rounded evaluation of recommender systems. We make
no strong claim that our work should immediately enable organizations with stewardship of
critical data to share access through synthetic data generation. Caution is warranted in this
regard, and applications must be evaluated on a case-by-case basis.
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A. Related Work

Slokom [29] and Slokom et al. [30] use CART to create synthetic Movielens-100k and Goodbook
datasets, and show that this preserves the relative performance of 3 recommenders, although
this is a somewhat easy test because the 3 recommenders they select have huge relative gaps in
performance (2-10x in terms of Recall@5) making it easy to preserve relative ordering even with
low quality synthetic data. Typically, new methods in recommender systems demonstrate recall
improvements on the order of 1-2%. Their setting also differs from ours in that they generate
partially synthetic data (some original ratings and items are kept) and the attack they defend
against is whether an adversary looking at the synthetic data can reliably determine the value
of summary statistics like a user’s favorite actor, director, or author.

Monti et al. [9] proposes a simple and flexible method of generating synthetic data by
splitting users into clusters and learning summary statistics for each cluster. They evaluate 5
recommenders on both real and synthetic data and find that the relative order of performance
is preserved in ”almost all” cases although this is not quantified. They do not explicitly consider
privacy guarantees or threat models.

To our knowledge, there has been no work that measures the Realism of synthetic data in
terms of comparative performance across multiple metrics on real data. Williams et al. [31]
conducts an aggregate analysis of multiple metrics on a Dialog State Tracking task, but the
details differ significantly from ours, apart from its use of the Kendall-Tau coefficient.

B. Experimental Methodology

Here we give further details of the components used for the Realism vs. Identifiability measure-
ments:

B.1. Datasets

To ensure our results generalize across domains, we performed separate sets of measurements
on both Movie and Song recommendations datasets. For movies, we use the MovieLens 1
Millions dataset [22], truncated (to speed up training for the GAN RNN) to at most 20 items per
user by randomly sampling. The resulting dataset consists of 4822 users over 3252 movies. For
songs, we use the MillionSongs dataset [23], filtered down to users that listened to at least 70
songs more than 3 times and songs that had at least 50 different users. This was then further
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truncated to 20 items per user by randomly sampling. This left 1752 songs and in order be
consistent with MovieLens, 5000 users were then sampled.

B.2. Recommenders

To get robust estimates of realism, we need a diverse set of recommendation algorithms to
compare. From the exhaustive benchmarking done by Dacrema et al. [32], we identified a subset
of 4 diverse algorithms that perform well in different settings:

1. TopPopular: The popularity baseline of Cremonesi et al. [33].
2. ItemKNN: A simple nearest neighbors baseline based on item similarities [34].
3. SVD: A popular matrix factorization model.
4. EASER: A recently proposed linear autoencoder [35] that achieves SotA results on the

Movielens-20M and Million Songs datasets.

For each of (2,3,4) we use 4 different hyperparameter sets (since comparisons between
different hyperparameter settings are as important to researchers as comparisons between
different methods), yielding a total of 13 recommender algorithms.

B.3. Metrics

We use the user-based offline ranking evaluation procedure of Liang et al. [25]:

1. Each recommender algorithm was trained on 80 percent of users (from either 𝐷train or
�̂�train), with the remaining 20 percent used for validation.

2. For each of the validation users, we use the trained recommender to predict a held out 20
percent of items, with the other 80 percent as input.

We evaluate the quality of the predictions with three standard ranking metrics at different
cutoffs:

1. Precision@1, @5, @10
2. Recall@1, @5, @10
3. Mean Reciprocal Rank (MRR) which does not have a cutoff and is more sensitive to

rankings at lower positions.

This gives a total of 7 metrics that can be compared. Along with the 13 recommenders in
Section 5.1 this gives a total of 1092 = 7 ∗ 𝑃(13, 2) possible comparisons for computing Realism
using a one-sided t-test.

B.4. More details

Each synthetic data generation algorithm from section 5.1 was used to generate synthetic
datasets of 50000 users each, on which all 3 Identifiability metrics and the Realism metric
were computed by sub-sampling separate sets of 4822 users for MovieLens and 5000 users for
Million Songs. Identifiability was averaged over 3 trials with different synthetic user samples,
while Realism was calculated once, but each recommender was trained 10 times with different
synthetic user samples to perform the Student’s t-test.



C. More Experimental Evaluations

We present additional experimental and qualitative analyses conducted with the tools we
introduced in this paper.

Figure 4: Top 2 Principal Components of synthetic (blue) and real user data (red). IdentityGAN (top)
reproduces the real data distribution better than Clusters-50 (bottom) which is weighted too close to
the mean.

C.1. Discussion of Pareto curves

The most significant conclusions we draw from Figures 3a-3f are regarding the composition of
different sections of each Pareto curve. Each point along the curve represents a Pareto-optimal
tradeoff between metrics that may be suitable for a particular application. Other points (in
the interior) may be considered as being dominated by points on the curve, but studying their
behavior can still give useful insights about the behavior of various algorithms and may be
relevant to future research.

1. N-Grams Methods: For all the identifiability measures, these models occupy the regions
of low identifiability and low realism for both domains.

2. Clustering Methods: These methods populate the interior of the Pareto curve for both
Membership and Attribute Identifiability in both domains. They are generally outper-
formed by GAN-based models, but when the simplicity of implementation is considered,



Figure 5: Plot of Wasserstein GAN (W-GAN) vs Regularized GAN (R-GAN) showing a clear clustering
based on training method that spans hyperparameters and architectures.

may still be regarded as a viable approach. For De-anonymization Identifiability, cluster-
ing in fact defines a significant portion of the intermediate region of the curve. While not
labeled on the graph for simplicity, increase in Realism and Identifiability is achieved by
increasing the number of clusters (see Appendix for more details).

3. GAN-based Models: The TimeGAN and IdGAN models contribute to different sections
of the Pareto curve for Realism vs Membership-Identifiability and Realism vs Attribute-
Identifiability in both domains. They are less competitive compared to other methods (esp.
clustering algorithms) on Realism vs Deanonymization-Identifiability, perhaps due to the
hyper-parameters being optimized to minimize the distance between item distributions.

4. Fractal Expansion and VAE: These algorithms produced synthetic datasets with low
realism and high identifiability (across all measures). In both cases, the situation is
exacerbated by there being much fewer statistically significant results to be included
in the realism measure (See Table 1 in the appendix). For fractal expansion, this is not
surprising in hindsight, because the method was designed with a specific objective that is
not recommender model independent, and without privacy considerations since it was
meant to run on pre-sanitized public data. For VAE, the results are surprising given the
competitiveness of the algorithm on recommendation problems in general [25], and may
warrant further analysis of the latent distribution of users learned by the VAE.

C.2. Comparison with Absolute Performance

In section 3 wemotivated the use of the Realismmetric versus measures of absolute performance.
It is natural to ask how interchangeable these metrics are. In Figures 6b and 6c, we show a
comparison between Realism vs the performance of EASER on 𝐷𝑡𝑒𝑠𝑡. While there is some



(a) Membership-Identifiability vs Easer:
MovieLens (b) Realism vs EASER (Test): MovieLens

(c) Realism vs EASER (Test): Million-Songs

correlation, there is still a high degree of variance between them. To further illustrate the
difference, we re-do the comparison of Realism vs Membership-Identifiability for MovieLens
(i.e. Fig. 3a) with EASER Test performance instead (see Fig. 6a). This shows a clear quantitative
and qualitative difference e.g. Clustering methods now dominate the top right region of the
Pareto curve.

C.3. Discussion

The most significant conclusions we draw from Figures 3a-3f are regarding the composition of
different sections of each Pareto curve. Each point along the curve represents a Pareto-optimal
tradeoff between metrics that may be suitable for a particular application. Other points (in
the interior) may be considered as being dominated by points on the curve, but studying their
behavior can still give useful insights about the behavior of various algorithms and may be
relevant to future research.

1. N-Grams Methods: For all the identifiability measures, these models occupy the regions
of low identifiability and low realism for both domains.

2. Clustering Methods: These methods populate the interior of the Pareto curve for both
Membership and Attribute Identifiability in both domains. They are generally outper-
formed by GAN-based models, but when the simplicity of implementation is considered,
may still be regarded as a viable approach. For De-anonymization Identifiability, cluster-
ing in fact defines a significant portion of the intermediate region of the curve. While not
labeled on the graph for simplicity, increase in Realism and Identifiability is achieved by
increasing the number of clusters (see Appendix for more details).



3. GAN-based Models: The TimeGAN and IdGAN models contribute to different sections
of the Pareto curve for Realism vs Membership-Identifiability and Realism vs Attribute-
Identifiability in both domains. They are less competitive compared to other methods (esp.
clustering algorithms) on Realism vs Deanonymization-Identifiability, perhaps due to the
hyper-parameters being optimized to minimize the distance between item distributions.

4. Fractal Expansion and VAE: These algorithms produced synthetic datasets with low
realism and high identifiability (across all measures). In both cases, the situation is
exacerbated by there being much fewer statistically significant results to be included
in the realism measure (See Table 1 in the appendix). For fractal expansion, this is not
surprising in hindsight, because the method was designed with a specific objective that is
not recommender model independent, and without privacy considerations since it was
meant to run on pre-sanitized public data. For VAE, the results are surprising given the
competitiveness of the algorithm on recommendation problems in general [25], and may
warrant further analysis of the latent distribution of users learned by the VAE.

C.4. Qualitative Analysis

We performed a PCA analysis to visualize the qualitative difference in the synthetic user data
generated by Clustering (on MovieLens with 𝐾 = 50) vs a GAN model with high realism
(Specifically, the highest realism IdentityGAN model). As Figure 4 shows, the GAN reproduces
the distribution of the real data more accurately than Clustering, with more coverage of the tail
distributions, while the clustering method over-represents the region near the mean user.

C.5. GAN Training Analysis

One of the hyperparameters used in the GAN training (see Appendix) was a binary variable
selecting either a Wasserstein GAN (W-GAN) [36] or Regularized GAN (R-GAN) [16] training
method. Inspection of the results (Figure 5) showed a consistent pattern w.r.t this variable that
spanned other hyperparameter settings and even the 2 network architectures, IdentityGAN
and TimeGAN. R-GAN consistently outperformed the W-GAN in terms of realism. However,
on average the W-GAN was competitive with R-GAN on all the Identifiability metrics. We
present this as an example of the kind of fine-grained analysis that our Realism-Identifiability
framework affords.

C.6. Membership-Identifiability

Figure 7 shows how Membership-Identifiabilty changes as K is changed. For low K values the
GAN outperforms the clustering methods but under performs for high k values.

D. Algorithm Implementations

Several of the algorithms tested either used or were modeled on the following implementations.
TimeGAN: https://github.com/jsyoon0823/TimeGAN
VAE: https://github.com/dawenl/vae_cf

https://github.com/jsyoon0823/TimeGAN
https://github.com/dawenl/vae_cf


Table 1
The number of recommender metric comparisons on synthetic users that were statistically significant
and contributed to the Realism metric computations (averaged over hyper-parameters in each algorithm
category).

Algorithms MovieLens MillionSongs

N-grams 764 669
Clustering 738 591
IdGAN 784 671

TimeGAN 749 641
Fractal Expansion 365 50

VAE 6 1

Figure 7: The change in Membership-Identifiablity as k is increased. The cluster based synthetic users
grow very linearly while the GAN has a non-linear growth

Fractal Expansion: https://github.com/mlcommons/training/tree/master/data_generation/
fractal_graph_expansions

https://github.com/mlcommons/training/tree/master/data_generation/fractal_graph_expansions
https://github.com/mlcommons/training/tree/master/data_generation/fractal_graph_expansions
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